Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene

نویسندگان

  • Ming Zhang
  • Jie Ma
  • Baogen Su
  • Guangdong Wen
  • Qiwei Yang
  • Qilong Ren
  • Shusheng Pang
چکیده

Polyolefin, as one of the most widely used macromolecule materials, has been one of the most serious threats to the environment. Current treatment methods of waste polyolefin including landfill, incineration, and thermal degradation have suffered from severe problems such as secondary pollution and the generation of other toxic substances. In this article, we report for the first time a high-efficiency method to produce high-value C2H2 from polyolefins using a rotating direct current arc plasma reactor, using polyethylene and polypropylene as feedstocks. The essence of this method is that a reductive atmosphere of pyrolysis enables a thermodynamic preference to C2H2 over other carbon-containing gas and the rotating direct current arc plasma reactor allows for a uniform distribution of high temperature to ensure high conversion of polymers. Thermodynamic simulation of product composition was performed, and the effect of plasma input power, polyolefin feed rate, and working gas flow rate on the pyrolysis results was experimentally investigated. It was found that, with proper parameter control, approximately complete conversion of carbon in polyolefin could be obtained, with a C2H2 selectivity higher than 80% and a C2H2 yield higher than 70%. These results not only create new opportunities for the reuse of polymer waste, but are also instructive for the green production of C2H2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma

Thermal plasma pyrolysis is a powerful technology for converting waste or low-value materials to valuable gaseous hydrocarbons. This paper presents for the first time the hydropyrolysis of n-hexane and toluene in a rotating-arc plasma reactor. Effects of the mole ratio of H/C in the feed, power input and magnetic induction were investigated to evaluate the reaction performance. A lower H/C rati...

متن کامل

Compression, supramolecular organization and free radical polymerization of ethylene gas

At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second o...

متن کامل

Production of Bio-oil by Oxidative Pyrolysis of Sewage Sludge in Rotating Fixed Bed Reactor

Pyrolysis is an attractive thermal conversion technology used to produce bio-oil and some chemicals. In this study, we investigated the pyrolysis of sewage sludge under N2 and CO2 atmosphere at various temperatures (350-750°C) in a rotating fixed bed reactor. For under N2 atmosphere, thermal gravimetric analysis (TGA) shows two major reaction peaks centered at 300 and 500°C. However, if CO2 was...

متن کامل

Optimization and Prediction of Reaction Parameters of Plastic Pyrolysis oil Production Using Taguchi Method

Design of Experiments (DoE) is a powerful guiding tool that can help researchers to identify the main variables that affect the performance characteristics. The present paper elaborates on the optimization and prediction of reaction parameters like type of plastic, catalyst, and temperature using Taguchi’s L9 orthogonal array method with three levels and three parameters to obtai...

متن کامل

Estimation of pyrolysis product of LDPE degradation using different process parameters in a stirred reactor

Pyrolysis of low density polyethylene (LDPE) by equilibrium fluid catalytic cracking (FCC) was studied in a stirred reactor under different process parameters. In this work, the effect of process parameters such as degradation temperature (420-510°C), catalyst/polymer ratio (0-60%), carrier gas type (H2, N2, ethylene, propylene, Ar and He), residence time and agitator speed (0-300 rpm) on the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017